Modulation of Rac1 activity by ADMA/DDAH regulates pulmonary endothelial barrier function.
نویسندگان
چکیده
Endogenously produced nitric oxide synthase inhibitor, asymmetric methylarginine (ADMA) is associated with vascular dysfunction and endothelial leakage. We studied the role of ADMA, and the enzymes metabolizing it, dimethylarginine dimethylaminohydrolases (DDAH) in the regulation of endothelial barrier function in pulmonary macrovascular and microvascular cells in vitro and in lungs of genetically modified heterozygous DDAHI knockout mice in vivo. We show that ADMA increases pulmonary endothelial permeability in vitro and in in vivo and that this effect is mediated by nitric oxide (NO) acting via protein kinase G (PKG) and independent of reactive oxygen species formation. ADMA-induced remodeling of actin cytoskeleton and intercellular adherens junctions results from a decrease in PKG-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and a subsequent down-regulation of Rac1 activity. The effects of ADMA on endothelial permeability, Rac1 activation and VASP phosphorylation are prevented by overexpression of active DDAHI and DDAHII, whereas inactive DDAH mutants have no effect. These findings demonstrate for the first time that ADMA metabolism critically determines pulmonary endothelial barrier function by modulating Rac1-mediated remodeling of the actin cytoskeleton and intercellular junctions.
منابع مشابه
The ADMA/DDAH pathway regulates VEGF-mediated angiogenesis.
OBJECTIVE Asymmetrical dimethylarginine (ADMA) is a nitric oxide synthase (NOS) inhibitor and cardiovascular risk factor associated with angiogenic disorders. Enzymes metabolising ADMA, dimethylarginine dimethylaminohydrolases (DDAH) promote angiogenesis, but the mechanisms are not clear. We hypothesized that ADMA/DDAH modifies endothelial responses to vascular endothelial growth factor (VEGF) ...
متن کاملThe ADMA/DDAH pathway is a critical regulator of endothelial cell motility.
Asymmetric dimethylarginine (ADMA) is an inhibitor of nitric oxide production associated with abnormal blood vessel growth and repair, however, the mechanism of action of ADMA is not well understood. We studied the role of exogenous and endogenous ADMA in the regulation of cell motility and actin cytoskeleton in porcine pulmonary endothelial cells (PAECs) and pulmonary microvascular endothelial...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملDimethylarginine dimethylaminohydrolase II overexpression attenuates LPS-mediated lung leak in acute lung injury.
Acute lung injury (ALI) is a severe hypoxemic respiratory insufficiency associated with lung leak, diffuse alveolar damage, inflammation, and loss of lung function. Decreased dimethylaminohydrolase (DDAH) activity and increases in asymmetric dimethylarginine (ADMA), together with exaggerated oxidative/nitrative stress, contributes to the development of ALI in mice exposed to LPS. Whether restor...
متن کاملcAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases.
BACKGROUND Pulmonary arterial hypertension is characterized by a progressive increase in pulmonary vascular resistance caused by endothelial dysfunction, inward vascular remodeling, and severe loss of precapillary pulmonary vessel cross-sectional area. Asymmetrical dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, and its metabolizing enzyme dimethylarginine dimethylaminoh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2009